China OEM Rivetless Drop Forged Conveyor Link X458 Chain for Painting Line System

Product Description

About Factory 

With more than 18 years’ histiory, we are a professinal manufacturer for drop forged products such as forged chain (X348 X458 X658 X678 X698 F100 F160), scraper chain (10160, 14218, 14226, 142N), conveyor trolley (X348, X458, X678, XT160), and drive chain (X348, X458, X678), and so forth standard moulds of chain. 

Besides, we can also produce as per your drawing or sample, special link chain, pusher, pin and plate, according to customers’ unique requirements.

Product Description

1) Material: Alloy steel, 40Cr, 42CrMo and so on.
2) Types: X348 X458 X658 X678 X698 F100 F160, and so on. (Or as per your drawing)
3) Process: Moulding→Forging→Polishing & Blasting→Fine machining→Heat treatment→Blasting→Inspecting & testing→Packing

Product Show
 

Technical Data
 

Model Pitch Dimension Lateral Corner Standard Measured Length (mm) Measured Quantity Tensile Strength (KN) Weight (Kg/m)
A F G J K S
80H 80 73 42 18.4 20 34.5 19.5 7 3032/3058 38 250 7.8
X348 76.6 46 27 12.7 12.7 20.6 13.5 9 3050.5/3095.2 40 110 3.2
X458 102.4 57 37 16 16 26.5 17.5 9 3063.1/3090.2 30 210 5.2
468H 102.4 84.1 47.8 18 29.5 42.9 22.2 9 3063.1/3090.2 30 318 11.5
X658 153.2 55.6 35 16 16 57.2 17.5 7 3055.1/3082.8 20 210 4
X678 153.2 77 50.8 22.2 21 34.2 25 7 3055.1/3082.8 20 320 9.5
678 153.2 77 50.8 22.2 21 34.2 25 7 3055.1/3082.8 20 320 9.5
698 153.2 95.25 64 28 25.4 41.3 32 5 3055.1/3082.8 20 515 17
998 229.4 95.25 67.5 28 25.4 41.3 32 5 3205/3232.4 13 515 14.8
9118 229.4 123.8 76.2 35 33.5 52 38.1 5 3205/3232.4 13 832 24.2
S348 76.6 38.9 28.6 12.7 12.7 20.6 13.5 9 3050.5/3095.2 40 110 3.2
S458 102.4 52.1 35 16 16 26.5 17.5 9 3063.1/3090.2 30 210 5.2
S678 153.2 69.8 50.8 22.2 21 34.2 25 7 3055.1/3082.8 20 320 9.5
S698 153.2 73 68.3 28 25.4 41.3 32 5 3055.1/3082.8 20 515 17
S9118 229.4 98.4 77.8 35 33.5 52 38.1 5 3205/3232.4 13 832 24.2
F100 100 57 37 16 16 26.5 17.5 9 2991.3/3018.3 30 210 5.2
F160 160 78 54 24 20.5 36 28 7 3190.7/3219.5 20 318 10.3

Products & Testing Equipments
 

Products Application


Packing & Delivery
 

Why Choose Us?

1. We are engaged in chain industry over 15 years with rich market experience. We keep improving production techniques. All the products have longer working life and have passed the market test.

2. We can design the correct chains with high quality material, good abrasion resistance, good corrosion, high strengthen and etc as per your request or the chain application.

3. We are the chain manufacturer; you can directly purchase the product from us with low price and high quality.

4. We have a professional team for international trade, they have abundant experiences and are always ready to solve problems for customers. So you have nothing to worry about.

5. We have the long-term cooperative forwarder who can give us the lowest freight. And it can help you to save the freight. What’s more, for the FCL, we will design the packages as per the container sizes with the largest capacity to save the shipping cost for both of us.

 

Material: Alloy
Structure: Combined Chain
Surface Treatment: Polishing
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

conveyor

How do you calculate the chain pull force in a conveyor chain system?

The chain pull force, also known as the chain tension, is an important parameter to determine in a conveyor chain system. It represents the force required to move the conveyed load along the conveyor. The calculation of chain pull force involves several factors:

1. Weight of the Load: Determine the weight of the load being conveyed. This includes the weight of the product, packaging materials, and any additional equipment or components carried by the conveyor.

2. Friction Coefficients: Identify the friction coefficients between the load and the conveyor components. This includes the friction between the product and the conveyor chain, as well as the friction between the product and the conveyor bed or guides. These coefficients are typically provided by the manufacturer or can be obtained through testing.

3. Incline or Decline Angle: Consider the angle at which the conveyor operates. If the conveyor has an incline or decline, the angle will affect the force required to move the load.

4. Acceleration and Deceleration: Account for any acceleration or deceleration requirements in the conveyor system. If the conveyor needs to start or stop abruptly or if there are changes in speed, these factors will impact the chain pull force.

Once these factors are determined, the chain pull force can be calculated using the following formula:

Chain Pull Force = (Weight of Load + Friction Force) × (1 + Incline or Decline Factor) × (1 + Acceleration or Deceleration Factor)

It’s important to note that the accuracy of the calculation depends on the accuracy of the input values. Therefore, it’s recommended to consult the conveyor manufacturer or an engineering professional to ensure precise calculations and proper sizing of the conveyor chain.

conveyor

How do you calculate the power requirements for a conveyor chain?

Calculating the power requirements for a conveyor chain involves considering various factors. Here’s a step-by-step process:

1. Determine the total weight to be transported: Measure or estimate the total weight of the material or product that will be carried by the conveyor chain. This includes the weight of the product itself, any packaging, and additional loads.

2. Determine the speed of the conveyor: Determine the desired speed at which the conveyor chain will operate. This is typically measured in feet per minute (FPM) or meters per second (m/s).

3. Calculate the required capacity: Multiply the total weight by the desired speed to determine the required capacity of the conveyor system. This will give you the weight per unit of time (e.g., pounds per minute or kilograms per hour).

4. Consider the conveyor’s design factors: Take into account various design factors such as the type and pitch of the conveyor chain, the coefficient of friction between the chain and the conveyor components, and any incline or decline angles of the conveyor system. These factors affect the power requirements.

5. Determine the required power: Use the following formula to calculate the power requirements:

Power (in horsepower) = (Capacity × Friction Factor) ÷ (33,000 × Efficiency)

Where:

– Capacity is the weight per unit of time (from step 3)

– Friction Factor is the ratio of chain tension to chain weight, taking into account the design factors

– 33,000 is a conversion factor to convert the units to horsepower

– Efficiency is the overall efficiency of the conveyor system, typically expressed as a decimal value (e.g., 0.95 for 95% efficiency)

6. Select a suitable motor: Based on the calculated power requirements, select a motor that can provide the necessary power to drive the conveyor chain. Consider factors such as motor type, motor efficiency, and overload capacity.

It’s important to note that the power requirements may vary depending on specific conveyor system designs and operating conditions. Consulting with a qualified engineer or conveyor manufacturer is recommended to ensure accurate calculations and proper motor selection.

conveyor

What are the noise levels associated with conveyor chains?

The noise levels associated with conveyor chains can vary depending on several factors:

1. Chain Type: Different types of conveyor chains produce varying noise levels. For example, roller chains tend to generate more noise compared to silent chains or plastic modular chains.

2. Speed: The speed at which the conveyor chain operates can influence the noise level. Higher speeds generally result in increased noise due to the impact and friction between the chain and other components.

3. Chain Condition: The condition of the conveyor chain plays a role in noise generation. Worn-out or improperly maintained chains can produce more noise due to increased friction and vibration.

4. Surrounding Environment: The noise levels can also be affected by the environment in which the conveyor system operates. Factors such as the presence of other machinery, acoustics of the facility, and noise insulation measures can impact the overall noise level.

5. Design and Components: The design of the conveyor system and the choice of components can influence noise levels. Factors such as the use of noise-reducing materials, proper alignment of components, and vibration dampening measures can help reduce noise.

It is important to note that excessive noise levels in the workplace can have adverse effects on the well-being of employees and may require noise control measures to comply with occupational health and safety regulations. Implementing noise reduction strategies like using noise-dampening materials, incorporating proper lubrication, maintaining chain tension, and applying vibration isolation techniques can help minimize the noise associated with conveyor chains.

China OEM Rivetless Drop Forged Conveyor Link X458 Chain for Painting Line System  China OEM Rivetless Drop Forged Conveyor Link X458 Chain for Painting Line System
editor by CX 2023-10-26

Chain And Sprocket

As one of the chain and sprocket manufacturers, suppliers, and exporters of mechanical products, We offer chain and sprocket and many other products.

Please get in touch with us for details.

Manufacturer supplier exporter of chain and sprocket.

Recent Posts